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In the present paper, wave propagation in transversely isotropic poroelastic solids is 

studied in the presence of magnetic field. Governing equations are derived from Biot’s 

theory. The frequency equation is obtained in the presence of magnetic field. Frequency 

against the wavenumber for different values of magnetic field and angles is calculated. 

The result obtained theoretically is computed and are presented graphically. 
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INTRODUCTION 

The study of wave propagation in transversely 

isotropic solids has many applications in 

earthquake and engineering seismologists. The 

problems related to porous medium are attracting 

more attention in many practical investigations. 

One of the important aspects of these problems is 

the response of the media to arbitrary inputs. 

Elastic solutions for a transversely isotropic half 

spaces subjected to buried asymmetric loads is 

presented in [1]. Plate wave propagation in 

transversely isotropic materials is studied in [2]. 

Effects of magnetic field and initial stress on the 

propagation of interface waves in transversely 

isotropic perfectly conducting media are studied in 

[3]. Wave field stimulation for heterogeneous 

transversely isotropic porous media with the JKD 

dynamic permeability is investigated [4]. 

Transversely isotropic nonlinear magneto-active 

elastomers are explored in [5]. Propagation of 

plane waves in a rotating transversely isotropic 

two temperatures generalized thermoelastic solid 

half space with voids is studied in [6]. A study on 

propagation of waves in a transversely isotropic 

poroelastic layer bounded between two viscous 

liquids is discussed in [7]. On a vibration problem 

of transversely isotropic bars is presented in [8]. 

Dynamic interaction between elastic plate and 

transversely isotropic medium is studied in [9]. 

Field induced transversely isotropic shear 
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response of ellipsoidal magneto-active elastomers 

is investigated in [10]. Transverse isotropy in 

magneto-active elastomers is discussed in [11]. 

Propagation of plane waves in transversely 

isotropic fluid saturated porous media is 

investigated in [12]. In all the above cited papers 

we cannot find the magnetic field in transversely 

isotropic poroelastic solids. In the present paper an 

attempt made to study the wave propagation in 

transversely isotropic poroelastic solids in the 

presence of magnetic field. Frequency versus 

wavenumber is studied for different magnetic 

fields and angles.  

2. Governing equations and solution of the 

problem 

Let ),,( zyx be the rectangular coordinates. The 

equations of motion under the effect of magnetic 

field are given in [13]. 

.

),(

),(

),(

12112

2

12112

2

12112

2












RQeMeMes

Ww
t

F
zyx

Vv
t

F
zyx

Uu
t

F
zyx

zzyyxx

z

zzzyzx

y

yzyyyx

x

xzxyxx

+++=

+



=+




+




+





+



=+




+




+





+



=+




+




+





  

                                                                         (1) 

 

In eq. (1) the stresses ij  for the transversely 

isotropic poroelastic solid [14] are 
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                                                             (2) 

Where ),,( wvu and ),,( WVU are the 

displacements of solid and liquid media, e and 

are the dilatation of solid and fluid, 

CMLFRQNA ,,,,,,, are all poroelastic 

constants, and mass coefficients [13]. 
zyx FFF ,,  are 

the components of  Lorenz’s forces along the 

zyx ,, directions. Taking into the account the 

absence of displacement current the linearlized 

equations governing the electromagnetic fields for 

slowly moving solid medium having electrical 

conductivity are [15]. 
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In eq. (3) hHJE


,,,, 00   are the electrical intensity, 

electric current density, primary magnetic field, 

magnetic permeability, perturbed magnetic field 

over the constant primary magnetic field 

respectively. Solving J


 of eq. (3) and then put the 

value of J


 in the equation of Lorentz force

)( 00 HJF =


 , we get the components of Lorentz 

force as 
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Substitution of eq. (2) and eq. (4) in eq. (1) for the 

two dimensional problem, we get the following 

equations: 
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(5)   

For propagation of sinusoidal waves in arbitrary 

direction, the solution of eq. (5) takes the 

following form 

.),,,(),,)(,,,(
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Where  sin,cos are the angles made by the 

direction of propagation with the x-axis and y-axis 

respectively, ,k are the wavenumber and 

frequency. Substitution of eq. (6) in eq. (5) we get 

the following equations: 
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3. Numerical results and discussion 

For the sake of numerical results, the eq. (7) 

reduces to the following form. 
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In order to obtain a non-trivial solution of the 

system, determinant of coefficients must be zero. 

Accordingly, we obtain the following frequency 

equation.  
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                                                              (9) 

The frequency eq. (9) gives implicit relation 

between frequency, and wavenumber. For 

numerical process, the following materials are 

given in [16]. 
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So that for ,0.1=== lmf these constants become 

the elastic constants for isotropic kerosene 

saturated sandstone [17]. The value of 25.4
0
=

is given in [18]. For given materials, the above 

obtained frequency equation, (9), constitute a 

relation between the frequency and the 

wavenumber for different angles= 
00000

90,60,45,30,0 and magnetic field

3.0,2.0,1.00 =H . From figure1-5, represents the 

frequency against wavenumber for different 

angles and magnetic field. From figures 1-5 the 

frequency of curves are periodic in nature as the 

angle and magnetic field increases. From figure 6, 

in the absence of magnetic field, it is observed that 

as the wavenumber increases frequency decreases. 

 
Fig: 1 Variation of frequency with wavenumber 

(angle=30degrees) 

 
Fig: 2 Variation of frequency with wavenumber 

(angle=45degrees) 

 

 
Fig: 3 Variation of frequency with wavenumber 

(angle=60degrees) 
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Fig: 4 Variation of frequency with wavenumber 

(angle=90degrees) 

 

 
Fig: 5 Variation of frequency with wavenumber 

(angle=0degrees) 

 

 
Fig: 6 Variation of frequency with wavenumber in 

absence of magnetic field 

 

CONCLUSION 

The study of wave propagation in transversely 

isotropic poroelastic solids with magnetic field is 

studied. Governing equations are derived in the 

presence of magnetic field.  It is concluded that the 

trend of curves exhibits the properties of liquid 

saturated porous medium and satisfies the requisite 

conditions of the problem. The disturbance in the 

porous medium is affected due to the solid present 

in the magnetic field, which in turn will affect the 

various phenomena like wave propagation. 
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